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ABSTRACT 

INHIBITION OF MALIGNANT GLIAL CELL GROWTH BY ESTRAMUSTINE, AN 
ESTROGEN BASED ANTIMICROTUBULE AGENT, AND SYNTHESIZED 
ANALOGS OF ESTRONE, AND THE BASIS FOR THE USE OF ESTRAMUSTINE IN 
COMBINATION CHEMOTHERAPY. Marc A. Weinstein, Joseph M. Piepmeier, David 
Keefe*, and Frederick Naftolin*. Section of Neurosurgery and *Department of OB/GYN, 
Yale University School of Medicine, New Haven, CT 

The current treatment of malignant glioma has undergone no major changes over 

the past decade. The current regimen of surgery, radiation, and chemotherapy has not 

resulted in any significant alteration in the course of this disease. The development of new 

chemotherapeutic agents targeted against cellular structures specific in glioblastoma may 

offer some hope for patients stricken with this disease. We have tested the estradiol-linked- 

nor-nitrogen mustard, estramustine (EM), against glioblastoma cell cultures obtained from 

operative specimens. EM is known to exert its antiproliferative action in prostatic cancer 

cells by binding to microtubules and promoting disassembly. This action is not related to 

the steroid or alkylating moiety and seems to be a result of the carbamate-ester bond 

between the two. We synthesized estrone analogs of EM without an alkylating moiety and 

with structural similarities to the carbamate-ester portion of EM. The non-alkylating 

estrone analogs inhibited as much as 90% of DNA synthesis, measured by 3[H]-thymidine 

incorporation assays, at a concentration of 10'^M. One agent, JE208, inhibited DNA 

synthesis nearly as much as EM. This agent also resulted in morphologic changes in 

glioblastoma cells similar to that of EM. The second objective of this report was to 

establish an innovative combination chemotherapeutic regime containing EM to further 

exploit its antiglioma actions. We tested EM in vitro in combination with the protein 

kinase C inhibitor and estrogen antagonist tamoxifen (TAM) and the antitumor antibiotic 

bleomycin (BLM). TAM was used since PKC is involved in microtubule function and 

since EM may exert estrogenic side-effects in patients. The combination of EM and TAM 

was more potent then either agent alone in inhibiting as much as 98% of DNA synthesis of 

glioblastoma cells. BLM has been reported to be more cytotoxic to cells in G2/M phase of 

the cell cycle. We first demonstrated that EM causes the accumulation of glioblastoma 

cells in G2/M, presumably due to its antimicrotubule action during metaphase. Then we 

showed enhanced cytotoxicity of BLM when cells were pretreated with EM. This report 

offers preclinical data on the use of EM and non-alkylating synthetic estrone analogs in the 

pharmacologic treatment of malignant glioma. Since combination chemotherapy has many 

advantages over single agent therapy, we also presented two in vitro combination models 

for exploiting the unique characteristics of estramustine. 
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INTRODUCTION 

Primary tumors of the brain remain without effective therapy 

During the past decade, there have been significant achievements in the modern 

treatment of cancer. However, brain tumors have remained an elusive challenge to cancer 

researchers around the world. Primary tumors of the brain now afflict approximately 

12,000-17,000 people annually many of whom are still in a productive stage of life. It is 

striking that the number of patients dying each year from brain tumors exceeds 10,000 

resulting in a high case:fatality ratio (Salcman, 1980). Although the incidence of brain 

neoplasms comprises less than 2% of all cancers (Katakura and Yoshimoto, 1988), it makes 

up a much larger portion of total cancer deaths. The proportion of expected life lost due to 

tumors of glial origin has been recently estimated to be 76% (Kallio et al., 1991). Even more 

disturbing are recent reports which demonstrate an increase in the incidence of malignant 

brain tumors in populations world-wide (Ben-Schlomo and Davey Smith, 1989; Greig et al., 

1990; Kallio et al., 1991, Mao et al., 1991). It has been argued that this increase cannot be 

explained simply by the introduction of improved diagnostic methods (Sant et al., 1988). 

Of the primary tumors of the brain, those of glial origin comprise approximately 50- 

60% (Youmans, 1990). These include the astrocytoma, oligodendroglioma, ependymoma, 

and medulloblastoma. The most common glial derived tumor, however, is the glioblastoma 

multiforme comprising over half of these neoplasms. The glioblastoma is a highly malignant 

tumor occurring most often after the fifth decade. It is believed to arise from the malignant 

transformation of less malignant astrocytic tumors following the continuum: astrocytoma, 

anaplastic astrocytoma (fibrillary), glioblastoma multiforme. Some glioblastomas may also 

arise de novo. The typical microscopic appearance is characterized by coagulative necrosis 

with surrounding pseudopalisading, cellular and nuclear atypia, and capillary endothelial 

proliferation (Harsh and Wilson, 1990 ). These tumors are highly aggressive and rapidly 

invade normal brain parenchyma making total surgical resection virtually impossible. 
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The prognosis for patients with glioblastoma is dismal. The most important 

prognostic factor for survival is age, however even younger patients rarely survive two 

years. A recent report estimates the probability of survival to one year to be 31% in those 

over age 50 years (Sant, 1988). Salcman (1980) obtained a median survival after operation 

of six months with a two-year survival rate of 7.4%. Current treatment for this disease is 

limited and usually involves corticosteroids to reduce intracranial pressure, operation for 

maximal reduction of tumor mass (see Ransohoff, 1976; Ransohoff et al. ,1986) radiation 

(see Nelson et al., 1986), and chemotherapy (see Brandes et al. 1991). The most widely 

used chemotherapeutic agent is bis-chloro-nitroso-urea (BCNU) which has had moderate 

success in improving survival (Salcman, 1990). However, these data provide no major 

break-throughs and no dramatic alterations in the course of the disease have been observed 

over the past thirty years. 

Do sex hormones influence the growth of brain tumors? 

That sex steroids may influence the growth of human brain neoplasms was first 

reported by Cushing and Eisenhardt (1929) who observed the rapid progression of a 

meningioma in a patient during pregnancy. This finding was later confirmed in a larger study 

(Bickerstaff, Small, and Guest, 1958). More recently, a number of clinical and basic studies 

have provided evidence that suggests sex hormones may promote the proliferation of tumors 

of the central nervous system. First, women with breast cancer, a neoplasm commonly 

influenced by estrogens and progesterone, have been shown to be at increased risk of 

meningioma (Schoenberg, Christine, and Whisnant, 1975). Second, many intracranial 

neoplasms display increased incidence in relation to the sex of the patient: meningiomas are 

preponderant in woman, while gliomas are more common in men (Zulch, 1965). Third, in 

an experimental animal model, it was shown that the onset of benzpyrene-induced gliomas in 

rats was delayed by castration and ovariectomy (Hopewell, 1975). Also, there has been a 

recent study suggesting an association between brain tumors and menopausal status 
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(Schlehofer, Blettner, Wahrendorf, 1992). Schoenberg, Christine, and Whisnant (1975) 

found a two fold increase in the expected incidence of meningiomas in patients with breast 

cancer. Finally, at least in normal tissue, steroids induced neural cell growth in vitro by 

acting on glial cells (Vemadakis, Culver, and Nidess, 1977). 

Sex hormone receptors have been identified in a variety of human tumors (Stedman, 

Moore, and Morgan, 1980). Several investigators have measured steroid receptors in central 

nervous system neoplasms. Estrogen receptors were found in four of six meningiomas 

(Donnell, Meyer, and Donegan, 1979); and in a larger study estradiol binding was detected in 

meningiomas, schwannomas, and neurofibromas (Martuza, MacLaughlin, and Ojemann, 

1981). The latter investigation also revealed the presence of progestin receptors in a small 

number of meningiomas. Since then other studies have confirmed the presence of estrogen, 

androgen, and progestin receptors in human meningiomas (Tilzer et al., 1982; Cahill et al., 

1984; Kornblum et al., 1988). 

Estradiol and progestin receptors were also found in tumors of the spinal cord 

(Concolino et al., 1984). The tumors examined included ependymomas and astrocytomas. 

Acoustic neuromas may contain estrogen receptors as demonstrated by 

immunohistochemistry (Kasantikul and Brown, 1981). 

Many of these studies, especially those with neuroepithelial tumors, are difficult to 

interpret due to the small number of specimens examined. Furthermore, a finding common 

to most of the studies is the heterogeneity of the sex steroid receptor status of the tumors. 

Not all tumors contain steroid receptors, and of those that do, the specific receptor type in 

greatest quantity differs even between tumors of similar histology. For example, Poisson et 

al. (1983) reported eight of nine gliomas androgen receptor positive, two neoplasms also had 

estrogen receptors and two had progesterone receptors. Conversely, Kornblum et al. (1988) 

found no steroid receptors in any of the eleven gliomas they examined. Fujimoto et al. 

(1984) were unable to detect the presence of estrogen receptors in twelve glioblastomas, two 

cerebellar astrocytomas, and two ependymomas. They did note estrogen receptor positivity 
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in all three medulloblastomas studied. Neither progesterone nor estrogen receptors were 

identified in gliomas in a study of 30 intracranial tumors (Courriere et al., 1985). 

Interestingly, this study found progesterone receptors in all twelve meningiomas tested but 

not one of these tumors contained estrogen receptor proteins. Progesterone, estrogen, 

androgen, and glucocorticoid receptor levels were measured in another study of 12 gliomas 

(Brentani et al., 1984). Positive levels (greater than 10 fmol/mg protein) of progesterone 

receptor were identified in 50%, estrogen receptor in 17%, androgen receptor in 42%, and 

glucocorticoid receptor in 58%. A more recent report noted the presence of progestin 

receptors in 3 of 21 glioblastomas, androgen receptors in 7 of 21, and no estrogen receptors 

in any of 21 glioblastomas (Stojkovic et al., 1990). Finally, Paoletti et al. (1990) 

demonstrated in a large study of neuroepithelial tumors 39% of tumors with glucocorticoid 

receptor positivity, 22% with androgen receptors, 9% with estrogen receptors and only 4% 

with progesterone receptors. Again, these studies are difficult to interpret because the 

methods for determining receptor positivity as well as the definition of positivity are not 

uniform. 

In vitro studies have shown that estrogen and progesterone stimulate the growth of 

meningiomas in culture, and that this estrogen-induced growth can be inhibited by 

progesterone and, to a lesser extent, the anti-estrogen tamoxifen (Jay et al., 1985). In 

contrast, it has also been shown that progesterone enhances growth of meningioma when 

measured by a tumor stem cell clonogenic assay (Grunberg et al., 1987). In addition, the 

progesterone receptor antagonist RU 486 inhibits the growth of meningioma cells in vitro 

(Olson et al., 1986) and in nude mice (Olson et al., 1987). One study examined the effect of 

host sex on the growth of a human glioblastoma heterotransplanted into nude mice (Verzat et 

al., 1990). The tumors implanted into male nude mice demonstrated enhanced growth rate 

compared to the same tumors when implanted into female nude mice. The authors postulated 

that this difference was a result of the contrasting hormonal environment. However, studies 
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more closely examining the role of sex steroids in the proliferation of glioblastoma cells have 

not been undertaken to date. 

The importance of this work is indicated by the poor prognosis of patients with 

glioblastomas and other gliomas. Effective medical therapy is lacking especially when the 

tumor remains unresectable (Suzuki, 1988). The current knowledge of steroid receptors and 

hormone therapy in patients with carcinoma of the endometrium, prostate, and, especially the 

breast remains far more advanced than our understanding of the relationship of hormones to 

brain neoplasms (Menon etal., 1977; Patterson and Battersby, 1980; Henderson etal., 1982; 

Leung, 1982; Hollander, 1985). Perhaps an increased understanding of this relationship will 

provide new methods of extending and enhancing the quality of life of patients with glial cell 

tumors. 

Estramustine: an estrogen mustard 

The discovery of estrogen receptors in human neoplasms provided researchers with a 

potential chemotherapeutic target. The use of antiestrogens in estrogen receptor-positive 

breast cancer is well documented (Jordan, 1986). However, perhaps a more innovative 

therapy was first realized in the early 1970's with the development of steroid based alkylating 

agents (Konveys and Hogberg 1974). The rationale was to specifically target cytotoxic 

alkylating agents to hormone dependent neoplastic cells (Leclerq, Deboel, and Heuson, 1976; 

Leclerqc, Heuson, and Deboel, 1976). Many of these compounds were similar in that the 

alkylating moiety was conjugated to the steroid A-ring at position 3 (Catsoulacos and Boutis, 

1973; Leclercq and Heuson, 1978; Catsoulacos, Politis, and Wampler, 1979). The 

compound estramustine (EM) is a 17(3-estradiol derivative conjugated with a nor-nitrogen 

mustard through a carbamate-ester bond on position 3 of the A-ring (Figure la). The 

estrogen was to function as the carrier for the nitrogen mustard to estrogen dependent cancer 

cells. 
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The first studies of the cytotoxic effects of estramustine were in breast cancer cells. 

These early studies in vitro and in DMBA- induced rodent mammary tumors demonstrated 

promising antiproliferative activity (Muntzing, Jensen, Hogberg, 1979). However, clinical 

studies using EM in breast cancer patients were less encouraging. Since EM proved effective 

in inhibiting growth of prostatic cancer cell lines and animal models (Wakisaka, Iwasaki, and 

Shimazaki, 1979; Hansenson et al., 1988) clinical studies were attempted in patients with 

advanced prostate cancer (Jonsson and Hogberg, 1971; Mittelman, Shukla, and Murphy, 

1976; Nilsson and Jonsson, 1976; Jonsson, Hogberg, and Nilsson, 1977; Nagel and Kolln, 

1977; Benson, Gill, Cummings, 1983). These results were more promising. In fact, 

estramustine is used in Europe, especially in Nordic countries, for treatment of advanced 

prostatic carcinoma (Walzer, Oswalt, and Soloway, 1984; Johansson, Andersson, and 

Holmberg, 1991). 

Estramustine: a unique mode of action 

The mechanism of action of EM was largely believed, at first, to be a result of the 

selective delivery of the alkylating moiety to cells containing the estrogen receptor. It was 

later discovered that the cytotoxicity of EM was independent of the alkylating component 

(Tew, 1983; Hoisaeter, 1984; Tew and Hartley-Asp, 1984). Walker 256 rat mammary cells 

with acquired resistance to alkylating agents were still susceptible to the cytotoxic actions of 

estramustine (Tew and Wang, 1982). EM did not appear to induce the characteristic DNA 

damage, such as cross-linkage and strand break, of the alkylating agents (Tew et al., 1983). 

At the same time it was also determined that EM cytotoxicity was not a function of the 

steroid component. In addition, the major metabolite of estramustine is estramustine 

(formerly LEO 271) (Figure la) and not estradiol (Kadohama et al., 1979; Dixon, Brooks, 

Gill, 1980; Andersson et al., 1981; Gunnarsson et al., 1981) indicating that cleavage of the 

carbamate-ester bond is likely not a significant factor in cytotoxicity. DU 145 prostatic cancer 

cells contain no measurable estrogen receptors and are resistant to estradiol treatment yet they 
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are highly sensitive to growth inhibition by EM (Hartley-Asp and Gunnarsson, 1982). 

Similarly, while neither Walker 256 or HeLa S3 cells contain estrogen receptors or are 

inhibited by estradiol, they are susceptible to the cytotoxic actions of EM (Tew 1983). 

Therefore, the mechanism of action of EM is independent of the alkylating moiety and 

the estrogen component of the parent molecule. It is likely that the carbamate-ester bond 

plays a significant role in mediating the cytotoxic effects of estrogen mustard. Clues to the 

cellular and molecular target of EM and its carbamate ester bond were uncovered in the early 

1980’s. When exposed to cytotoxic concentrations of EM, DU 145 cells were found to 

exhibit mitotic arrest specifically while in the metaphase (Hartley-Asp, 1983; Tew et al., 

1983; Hartley-Asp, 1984; Sheridan, Speicher, and Tew, 1991). It was observed that EM 

interfered with spindle formation and resulted in a characteristic "rounded-up" appearance of 

cells. These results were similar to an earlier finding that EM resulted in an increase in the 

mitotic index of peripheral blood lymphocytes (Evans and O’Riordan, 1975). 

Using fish erythropores, a red pigment cell with thousands of radially organized 

microtubules, as a model, Sterns and Tew (1985) demonstrated that EM in micromolar 

concentrations disrupts microtubules. A loss of red pigment pulsation was observed when 

EM caused the disassembly of microtubules from the peripheral margins toward the center. 

Stems and Tew also used fluorescein labeled B-tubulin antibody to demonstrate a loss of the 

normal microtubular array and a rounding up of DU 145 cells after exposure to EM for 20 

minutes. 

EM also inhibited axonal transport in the frog sciatic nerve presumably through the 

promotion of microtubule disassembly (Kanje et al., 1985). It was proposed that EM was 

able to act in a "detergent-like manner" and disrupt microtubules by interacting with 

microtubule associated proteins (MAPs) (Sterns and Tew, 1985). Indeed, it was soon 

shown that certain MAPs bound EM in vitro (Wallin, Deinum, and Friden, 1985). This 

differs from the mechanism of taxol which stabilizes microtubules and enhances assembly 

(Schiff, Fant, and Horwitz, 1979) and from the vinca alkaloids which inhibit microtubule 
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assembly by preventing tubulin addition to the ends of the mitotic spindle (Jordan, Thrower, 

and Wilson, 1991). 

MAPs are specialized proteins associated non-covalently with microtubules. They 

can interact with microtubules to promote microtubule assembly. It has been suggested that 

MAPs may allow for functional specialization of microtubules (Vallee et al., 1986). Indeed, 

some MAPs are tissue and cell specific (Bloom et al., 1986, Binder, Frankfurter and 

Rebhun, 1986). MAP 2 is almost exclusively found in neuronal tissue or neural crest 

derivatives (Caceres et al., 1984; Stearns and Binder, 1987) and MAP-1 is found in both 

neuronal and non-neuronal cells (Bloom, Schoenfeld, Vallee, 1984). When it was 

demonstrated that EM bound both MAP-1 (Steams et al., 1988) and MAP-2 (Stearns and 

Tew, 1988) and resulted in not only the inhibition of microtubule assembly but the disruption 

of intact microtubules it was clear that this drug was a novel anti-microtubule agent. 

Estramustine binding protein accumulates estramustine in cells 

Estramustine was widely studied using prostatic cancer cells largely because of early 

work which demonstrated uptake and retention of EM in vivo by the rat prostate (Plym 

Forshell and Nilsson, 1974; Hoisaeter, 1976; Appelgren et al., 1978; Kruse, and Hartley- 

Asp, 1988). A 40-50kD high affinity rat estramustine binding protein (REMBP) was later 

discovered by gel chromatograpy in the cytosol of ventral prostate homogenate (Forsgren, et 

al., 1977; Forsgren et al., 1979). This protein was distinct from the steroid receptors and 

natural steroids were poor competitors for binding sites when compared to estramustine and 

estromustine. In fact, it seems as if REMBP was previously discovered independently by 

other groups and described as a prostatic secretory protein called prostatein (Lea, Petrusz, 

and French, 1979) and prostatic binding protein (Heyns, 1977; Heyns et al., 1978). There 

may even be an increase in EM BP in neoplastic cells since treatment with radio-labeled EM 

resulted in the measurement of three times as much radioactivity in prostate cell cytosol from 
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rats with prostatic cancer than in those with benign prostatic hyperplasia BPH (Forsgren and 

Bjork, 1984). 

The human EMBP (HEMBP) was soon characterized as a 54 kD glycoprotein by gel 

filtration and HPLC with a sedementation coefficient of 3.6S (Bjork et al., 1982). It was 

suggested that HEMBP might serve as a prognostic indicator of response to EM therapy in 

prostatic cancer. Also, EMBP levels may be regulated by steroid hormone levels. REMBP 

decreases after castration but is restored to previous levels following replacement of 

androgens (Pousette et al., 1981). 

Using immunohistochemistry, REMBP immunoreactivity was found in cultured 

human glioma cells sensitive to the anti-proliferative effect of estramustine (von Schoultz et 

al., 1988). This finding not only has major therapeutic implications but also is important on 

a more fundamental scientific level. EMBP has recently been discovered in human brain 

tumor specimens using REMBP polyclonal antiserum with cross reactivity to HEMBP in a 

radioimmunoassay (von Schoultz et al., 1991). Both astrocytoma and meningioma tissue 

samples contained levels higher than in epileptic brain and brain specimens taken at autopsy. 

If EMBP production is increased in human brain tumor compared to surrounding brain, 

potential selective chemotherapy using EM would be possible. 

Estramustine as an antiglioma agent 

The finding that MAPs are abundant in glial cells and gliomas (Couchie et al., 1985; 

Couchie, Charriere-Bertrand, and Nunez, 1988), that level of differentiation and quantity of 

microtubules are inversely related in neoplastic astrocytes, and the finding of EMBP 

immunoreactivity in human glioma cells led to the possibility of developing EM for the 

treatment of glioma. Anti-microtubule therapy in other refractory cancers has proven 

efficacious (McGuire et al, 1989) and it was hoped that the microtubule, MAPs, and EMBP 

might provide a potent and specific target for the treatment of malignant glioma. 
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Indeed, EM was shown to inhibit the growth of cultured malignant glioma cells (von 

Schoultz et al., 1988). Glioma cell lines U-105MG, U-118MG, and U-251MG were 

inhibited in a dose dependent fashion with concentrations of 1-40 mg/ml after three to six 

days of incubation. EM is taken up and retained by glioma cells and is readily oxidized to its 

primary active metabolite estromustine (von Schoultz, Gunnarsson, and Henriksson, 1989). 

EM inhibition of proliferation was much more pronounced than estradiol or nor-nitrogen 

mustard alone (von Schoultz, Lundgren, and Henriksson, 1990). These data correlate with 

that generated from prostatic cancer cells in vitro and suggest a similar mode of action for 

EM in glioma cells. In fact, EM inhibits mitosis and results in G2/M phase cell cycle arrest 

(Ibid ). However, the mechanism of EM action in glioma cells has not yet been defined and 

comparisons to its mode of action in the prostate cell lines are purely speculative. Further 

work will need to be done to determine if EM binds to MAPs in glioma cells and when 

HEMBP actually exists in human brain tumors. 

In vitro combination chemotherapy 

As mentioned previously, current chemotherapeutic options for the management of 

malignant gliomas are limited and their clinical efficacy is unsatisfactory. No single agent has 

been able to significantly alter the dismal prognosis of patients with glioblastoma. 

Combination chemotherapy has many advantages over single agent regimes including less 

toxicity, greater cell kill, and decreased tumor resistance. We (Piepmeier et al., 1993) and 

others (von Schoultz et al., 1988, 1990) have shown that antimicrotubule compounds such 

as estramustine potently inhibit malignant glial cell growth in culture. However, the utility of 

estramustine in vivo may be best realized in a combination chemotherapeutic regime. We 

selected two agents to evaluate with estramustine in a combination chemotherapeutic model in 

vitro: tamoxifen and bleomycin. What follows is a brief description of the rationale behind 

this choice of drugs. 
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Tamoxifen: a protein kinase C inhibitor 

The triphenylethylene derivative tamoxifen (TAM) is a member of a class of 

compounds that are potent inhibitors of protein kinase C (PKC) (O’Brian et al., 1985, 1986). 

This inhibition is thought to be mediated by direct action at the ATP-binding region of the 

active site of PKC (O’Brian, Ward and Anderson, 1988). TAM is also an estrogen receptor 

antagonist used as adjuvant therapy in the treatment breast cancer (Jordan 1986). However, 

some effects of TAM on breast cancer cells in vitro are distinct from its antiestrogenic activity 

(Reddel, Murphy, and Sutherland, 1983; Sutherland et al., 1983). Indeed, TAM inhibits 

proliferation in some ER-negative breast cancer cell lines maintained in serum free media 

(Darbre, Curtis, and King, 1984; Chouvet et al., 1988). 

PKC inhibition exerts an antiproliferative effect on cultured gliomas (Pollack et al., 

1990a) and may induce differentiation of human glioblastoma cells (Minana et al., 1991). 

Recently, TAM has been demonstrated to inhibit the proliferation of cultured malignant 

gliomas acting through a mechanism independent of estrogen receptor blockade (Pollack et 

al., 1990b). We investigated the effect of combining EM and TAM on the proliferation of 

cultured human glioblastoma cells since these agents may possess synergistic actions against 

microtubules. This combination also targets distinct physiologic mechanisms which may 

enhance the antiproliferative action of either agent when used alone. In addition, some 

clinical side-effects of EM are estrogen-related, presumably due to increased levels of 

circulating estrogens and estrogen metabolites (Andersson et al., 1981; Gunnarsson et al., 

1981; Daehlin et al., 1986). It is certainly possible that the addition of TAM to an EM 

regimen may benefit patients suffering from estrogenic side-effects. 

Bleomycin is most effective against mitotic cells 

Another agent we thought would be useful in combination with estramustine is 

bleomycin. Bleomycin is a glycopeptide antibiotic isolated from Streptomyces verticillus 

with anti-tumor properties (Umezawa et al., 1966). Its mechanism of action is by DNA 



www.manaraa.com



www.manaraa.com

12 

damage through scission likely a result of free radical generation (Twentyman, 1984). In 

contrast to other anti-cancer agents, bleomycin shows little bone marrow toxicity (Kimura et 

al., 1972). Pulmonary fibrosis is its major dose limiting side-effect. Bleomycin has found 

its clinical utility in combination chemotherapy for lymphomas, squamous cell cancers, and 

testicular carcinoma.. 

Terasima and Umezawa (1970) first demonstrated the sensitivity of mitotic cells to 

bleomycin. They syncronized HeLa S3 cells using the mitotic-shake method and found these 

cells to be most sensitive to bleomycin. Work by Barranco et al. (1982) has shown that 

bleomycin is most cytotoxic to cells in G2/M phase of the cell cycle. Chinese hamster ovary 

(CHO) cells synchronized in the S-phase with dianhydrogalactitiol and released will show the 

greatest proportion of cells in G2/M 18 hours later. When CHO cells were exposed to 

bleomycin at various times after Gal treatment, they were most susceptible to the cytotoxic 

effect when the greatest number of cells were in G2/M. 

Barranco and Humphrey (1971) also showed that when CHO cells were 

synchronized in various stages of the cell cycle with double thymidine block, they were most 

sensitive to bleomycin in G2 and M phase. Less than one-tenth the amount of bleomycin 

was needed to achieve a similar decrease in survival if the cells were in G2 or M as opposed 

to G1 or S. This approach has also been successful more recently in vitro with sodium 

arsenite as the synchronizing agent (Jan et al., 1990) and in animal studies with ACNU 

(Shimizu et al., 1980). Indeed, in humans the effectiveness of bleomycin in combination 

chemotherapy regimes may be related to a cell kinetic mechanism. 

Bleomycin has demonstrated antitumor activity and increased survival in a rat brain 

tumor model (Morantz et al., 1983). An in vitro study used bleomycin at a concentration of 

10 mU/ml and inhibited the growth of 7 of 15 cultured gliomas (Bogdahn 1983). Clinical 

trials with bleomycin in the treatment of brain tumors have produced mixed results (Takenchi 

1975; Feun et al., 1991). 
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We have, therefore, set out to increase the susceptibility of glioblastoma cells to 

bleomycin by pretreating cells with estramustine. We first sought to demonstrate a 

significant accumulation of cells in G2/M with estramustine. Then, we established a dose 

response antiproliferative action of bleomycin on our cells. Finally, we examined the effect 

of bleomycin on cells pretreated with estramustine. 

Structural analogs of estrone without an alkylating moiety 

Since the antimicrotubule effect of EM is observed only when the compound is intact 

and not through its alkylating or steroid constituents, we postulated that the structural 

relationship of the carbamate-ester bond to position 3 of the A-ring plays a role in its 

antimicrotubule action. This is consistent with the structure of other microtubule inhibitors 

such as taxol (McGuire et al., 1989) and nocodazole (Gupta 1986) which contain a carbamate 

group at either the 2 or 3 position of a heterocyclic or homocyclic A ring. To address 

whether structural variants of estrone without an alkylating moiety could inhibit the 

proliferation of gliomas in culture in a similar fashion as EM, we synthesized estrone analogs 

with non-alkylating carbamate structures on the A ring. Each of these analogs were tested in 

vitro for inhibitory action against glioblastoma cells to assess the relationship between 

structure and antiproliferative efficacy. 

Summary of Aims 

The aims of this thesis are many fold. Since the literature about steroid receptors in 

gliomas is confusing we examined operative specimens of glioblastoma for the presence of 

androgen, estrogen, and progesterone receptors in an attempt to clarify this data. We then 

sought to determine the effect of various sex steroids on the proliferation of cultured 

glioblastoma cells. These cells were discovered to be estrogen unresponsive, and we 

subsequently examined the effect of estramustine on glioblastoma cells in culture in order to 

further clarify its antiglioma action. Next, we synthesized analogs of estrone structurally 
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similar to estramustine but without the alkylating moiety and tested them for antiproliferative 

activity against glioma cells. This was done in an attempt to demonstrate that estramustine 

action is not a function of the alkylating moiety and to possibly determine the optimal drug 

structure for microtubule inhibition. 

Then we turned our attention to the possibility of combining estramustine with other 

agents. After finding an inhibitory effect of the estrogen antagonist tamoxifen on the growth 

of the cells we further examined the inhibitory response of our cultures to this drug. We then 

sought to increase the efficacy of tamoxifen therapy by pretreating cells with estramustine. 

Finally, we wished to confirm the ability of EM to arrest cells in G2/M and then attempt to 

enhance the cytotoxic effect of bleomycin by estramustine pretreatment. 
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GENERAL METHODS 

Chemicals 

EM was a gift from Pharmacia Inc., Helsingborg, Sweden and was prepared as a 

1000-fold stock in dimethyl sulfoxide (DMSO). Tamoxifen (Sigma Chemicals) was 

prepared as a 1000-fold stock solution in 95% ethanol. Bleomycin sulfate (Blenoxane) was 

generously supplied by Dr. T. Dugan at the Oncology Division of Bristol-Meyers Squibb 

Co., Evansville, Illinois, and was prepared as 1000-fold stock concentrations in sterile 

water. 

Estradiol, dihydrotestosterone, R5020, R1881, and progesterone were obtained from 

Sigma chemicals and prepared as 1000-fold stock concentrations in 95% ethanol. All 

radiolabelled steroids were purchased from New England Nuclear (Boston) and stored 

diluted in either benzene:ethanol (9:1) or toluene:methanol (9:1) at -20 °C in the dark and 

routinely tested for purity one week before use by thin-layer chromatography according to 

manufacturer's recommendations. 

Drug synthesis 

Analogs of estrone (Figure lb) were synthesized by Jan Zielinski of the Department 

of Obstetrics and Gynecology. NMR spectra were recorded on a Bruker MW-500 

spectrometer in DMSO-dg. Mass spectral data were obtained on a Kratos Ms-80 RFA 

spectrometer at 70 eV. The starting materials, 2-amino- and 4-aminoestrone were synthesized 

according to the procedure described by Stubeunrauch and Knuppen (1976) 

N-Acetyl-2-aminoestrone (JE213) was prepared from 2-aminoestrone by reacting 

with acetic anhydride in methanol: MS- m/z (relative intensity), 327 (M+-, 42), 309 (8), 285 

(100); iH-NMR- d 0.826 (s, 3H, C13-CH3), 2.064 (s, 3H, CH3-CO-), 6.543 (s, 1H, C4- 

H), 7.479 (s, 1H, Cj-H), 9.301 (s, 1H, C3-OH), 9.427 (s, 1H, -NH-) 

Reaction of 2-aminoestrone with an equimolar amount of ethyl chloroformate in N,N- 

dimethylformamide (DMF) in the presence of sodium bicarbonate produced ethyl carbamate 
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(JE208): MS- m/z (relative intensity), 357 (M+-, 100), 311 (61), 285 (21), 284 (22), 270 

(5); iH-NMR- 0 0.826 (s, 3H, C13-CH3), 1.213 (t, 3H, J=7.0 Hz, CH3-CH2-O-CO-), 

4.078 (q, 2H, J=7.() Hz, CH3-CH2-O-CO-), 6.522 (s, 1H, C4-H), 7.426 (broad, 1H, C3- 

OH), 8.061 (s, 1H, Cj-H), 9.288 (broad, 1H, -NH-) 

Ethyl carbamate (JE205) was prepared in the same manner: MS- m/z (relative 

intensity), 357 (M+-, 100), 311 (47), 285 (29), 284 (31), 270 (40); !H-NMR- d 0.823 

(s,3H, C13-CH3), 1.213 (broad, 3H, CH3 -CH2-0-C0-), 4.027 (broad, 2H, CH3 -CHo- 

O-CO-), 6.651 (d, 1H, J=8.4 Hz, C2-H), 7.020 (d, 1H, J=8.4 Hz, Cj-H), 8.098 (broad, 

1H, -NH-), 8.942 (s, 1H, C3-OH). 

Cyclization of carbamate (JE208) in DMF at 150°C yielded 2,3-oxazolonylestra- 

l,3,5(10)-triene-17-one (JE212): MS- m/z (relative intensity), 311 (M+-, 100), 255 (17), 

254 (19); ^H-NMR-O 0.833 (s, 3H, C13-CH3), 6.937, (s, 1H, C4-H), 6.978 (s, 1H, Q- 

H), 11,383 (broad, 1H, -NH-) 

Cell culture 

Tumor cultures of glioblastoma multiforme were obtained from operative specimens 

(Table 1). Those which were assayed for steroid receptor proteins were immediately frozen 

in liquid nitrogen following surgical removal. Confirmation of histological diagnosis was 

provided by neuropathology. Pieces of tumor tissue were washed in PBS and then 

mechanically minced and dissociated with trypsin. Cells were cultured in Dulbecco's 

modified Eagle’s medium (DMEM, Sigma) with 10% fetal calf serum (Sigma), penicillin 100 

units/ml, and streptomycin 0.01 mg/ml, at a temperature of 37° C in an atmosphere of 5% 

CO2. Cells from monolayers were lifted with 0.25% trypsin in 5 mM EDTA and passed at a 

dilution of 1:10. The human glioblastoma cell line HS683 (American Tissue Culture 

Collection Rockville, Md.) was cultured in a similar manner. 

One of the tumor cultures, J889H, was selected most often for study because it grew 

rapidly, maintained a consistent morphology following multiple passages and stained for glial 
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fibrillary acid protein by immunohistochemistry. J889H was obtained from a parietal lobe 

glioblastoma in a 58 year old man who had been treated with radiation therapy and Lomustine 

(CCNU) prior to obtaining this sample. Surgery was performed for recurrence of this 

glioblastoma following this therapy. Karyotyping of J889H revealed an aneuploid tumor 

with a chromosome count of 70. This tumor contained numerous abnormal chromosomes 

with reorganizations, deletions, and translocations consistent with a highly malignant glioma. 

Our laboratory has extensive experience with this tumor culture. 

Cell preparation 

All proliferation studies were performed as described below. Cells were lifted with 

0.25% trypsin in PBS with 5 mM EDTA, counted in a hemocytometer, and plated at a 

density of 2 x 10^ cells/cm^/ 100|il in 96-well microtiter plates. The cells were incubated and 

allowed to attach for 24h, and the plates were examined to assure an equal distribution of 

cells. The media was then withdrawn and 100 |il of experimental media was added 

containing the appropriate drug concentration. 

Control samples were used in each experiment and received medium containing the 

same concentration of DMSO and/or ethanol as the drug-treated cells (0.1%). All 

experiments were performed at least in quadruplicate but most often in sextuplicate. 

Estramustine, bleomycin, tamoxifen, estradiol, progesterone, DHT, estrone analogs, or 

combinations were diluted to the appropriate concentrations in medium and added in 100ml 

volumes. 

3H-Thymidine incorporation 

After incubating for the required time of the experiment, l|iCi ^H-thymidine was 

added to each well in 25 ml volumes. After an additional 4h incubation, the cells were lifted 

with a PHD cell harvester (Cambridge Technology, Inc.), transferred to glass fiber strips 



www.manaraa.com



www.manaraa.com

18 

which were then placed in scintillation vials with 2 ml scintillation fluid, and thymidine 

incorporation was measured with a Beckman LS 2800 liquid scintillation counter. 

Flow cytometry 

Cells were plated at a density of 2 x 10^ cells/cm- in large 150 cm- flasks in order to 

obtain at least 1X10^ cells for analysis. The cells were allowed to attach overnight and 

were then treated with drug in a volume of 23 ml media for the specified number of hours. 

At the conclusion of incubation, the cells in each sample were then washed in PBS, lifted 

with 0.25% trypsin in EDTA, and resuspended in 2 ml of ice-cold PBS. The cells were 

fixed by three stepwise additions of 2 ml each of ice-cold 95% ethanol. A minimum of one 

hour after fixation, the cells were resuspended in 1 mg/ml RNAse (Sigma) for 30 minutes at 

37°C and then stained with 0.05 mg/ml propidium iodide (Sigma) for one hour on ice. 

Flow cytometric analysis was performed with a FACS IV flow cytometer (Bectom- 

Dickinson, Mountain View, CA) by Rocco Carbone at the Yale Comprehensive Cancer 

Center, New Haven, Cl’. The cells were excited at 488nm, and the emission was collected 

above 590 nm. A minimum of 20,000 cells were analyzed for each sample. Cell cycle 

analysis was performed according to the mathematical model of Jett (1978). 

Cytosol estrogen, progesterone, and androgen receptor assays 

Samples from operative specimens were frozen in liquid nitrogen immediately upon 

removal in the operating room The tissue was then stored at -80°C for up to 10 months. 

The following procedures were all performed on ice. The tissue was weighed and then 

homogenized in ice-cold lOmM Tris ((Tris (hydroxymethyl) aminomethane) hydrochloride 

buffer containing 1.5 mM disodium EDTA, 1 mM dithiothreitol, 10 mM sodium molybdate, 

and 10% glycerol, pH 7.4 (TEGDMo buffer). Tissues were homogenized in a motor-driven 

glass Teflon homogenizer in 10 vols. of TEGDMo buffer. The homogenates were 

centrifuged at 45,000 rpm (100,000 x g) using a Ti7().l rotor (Beckman) in a OTD-75 
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DuPont-Sorvall ultracentrifuge refrigerated to 1°C. The supematents (cytosol fraction) were 

withdrawn with pre-chilled Pasteur pipettes and used immediately. 

For saturation binding analyses, samples were incubated with a range of 

concentrations of the appropriate ^H-labeled ligand. In the case of the cytosol estrogen 

receptor (ER) assays, incubations were performed with ^H-estradiol (2nM) at 0-4 °C for 20- 

24 h. The labeled steroid was added dissolved in 100 ml TEGDMo buffer. Parallel 

incubations, used in correcting for non-specific binding, contained 50-fold molar excess of 

unlabelled diethylstilbesterol (DES) in addition to labeled estradiol. Duplicate 100 pi samples 

of each incubate were then applied to columns made from 1.5 ml pipet tips. The columns 

contained Sephadex LH-20 equilibrated with TEGDMo buffer at 0-4 °C. Each sample was 

washed into the column with 100 ml of the same buffer. Flow through the columns was 

arrested for 30 min to reduce non-specific binding by differential dissociation. At the end of 

this time the remaining ^H-steroid was eluted with 400 pi directly into scintillation vials. 

Five ml of Optifluor scintillation fluid were added to each sample which was then assessed 

for radioactivity in a Beckman fi-counter. 

Androgen receptors (AR) were assayed in a similar manner. Aliquots of cytosol were 

incubated with 12 nM ^H-R1881 (an androgen receptor agonist) and 6.6 mM triamcinolone 

acetomide (added to block corticosterone and progestin receptor binding) for 20-24 h at 0-4 

°C. Parallel incubations to correct for non-specific binding were performed with 100-fold 

molar excess of unlabelled R1881. The remainder of the assay was performed as above. 

Progesterone receptors (PR) were also assayed in a similar manner. Aliquots of 

cytosol were incubated with 2.4 nM ^H-R5020 (a progestin agonist) and 1 mM 

dexamethasone (added to block glucocorticoid binding) for 20-24 h at 0-4 °C. Parallel 

incubations with 60-fold molar excess of unlabelled R5020. The remainder of the assay was 

performed as in the estradiol receptor assay. 

The cytosol protein content was assayed using the well known method of Bradford 

(1976) with bovine serum albumin as standard. 
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Data analysis 

The results of the 3H-thymidine incorporation analyses were analyzed by averaging 

the CPMs of the experimental groups and comparing them using the Student's T-Test on 

computer software (Stat Works). Dose response curves were analyzed using one-way 

analysis of variance (ANOVA) on the computer software StatView +. 
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RESULTS 

Steroid receptor analysis in operative glioma specimens 

This experiment examined tissue from operative specimens of glioma for the presence 

of steroid receptor proteins. The specimens studied included H1289G a glioblastoma from a 

woman; WG, IH, and AM glioblastomas removed from men, and JMz, an anaplastic 

oligodendroglioma. The specimens were assayed for the presence of androgen, estrogen, 

and progesterone receptors. Freshly dissected rat uterus was used as a positive control. 

The specimens examined displayed positive, but very low levels of receptor binding 

for all hormones. However, not every specimen was positive for every receptor. Using 10 

fmol receptor/mg cytosol protein as the lower limit of positivity, 3 of 5 tumor specimens 

contained androgen receptors, 3 of 5 estrogen receptors, and 3 of 5 progesterone receptors 

(Table 2). The greatest level of receptor was 74 fmol/mg (ER in tumor H1289G) and the 

lowest positive value was 12 fmol/mg (PR in tumor IH). This is compared to greater than 

1000 fmol/mg ER in the rat uterus. Only one tumor contained all three receptors (AM), and 

two tumors contained only one receptor type (ER-JMz and AR-WG). 

Response of cultured glioma cells to steroid hormones 

These studies focused on the response of cultured gliomas to various hormones. 

Primary cell cultures of the following tumors were studied: AM, H1289G, SZ, AMe, JML, 

and SC. Mature astrocytes from a temporal lobectomy for epilepsy were also studied. The 

methods are outlined above with the following distinctions. Estrogen, progesterone, and 

DHT were added to the culture media at a concentration of 10'^M with 0.1% EtOH serving 

as control. The media differed in that 10% gelded horse serum (Lowell Crowther Ranch, 

Sanford, CO) was used instead of fetal calf serum since the horse serum was mostly steroid 

free. Cells were incubated in the steroid containing media in quadruplicate microtiter wells 

for 72 hours before ^H-thymidine labeling took place. The experiment was repeated twice to 

confirm the data. 
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The results of these studies were unimpressive. None of the steroids tested had any 

stimulatory or inhibitory effect on any of the cell cultures in the concentration or duration 

studied when compared to control. Figure 2 shows the results for the AM cells, but these 

results were identical to those of the other gliomas. The steroid concentration was increased 

to 10~6M, but no difference was seen (Figure 3). The fetal astrocytes also did not respond to 

the sex hormones (data not shown). 

Antiproliferative effect of estramustine in malignant glioma cell cultures 

Having failed to demonstrate any effect of steroid hormones on glioma cells and with 

receptor assay results difficult to interpret we decided to study the estrogen mustard in our 

cell systems since its reported actions are not mediated through an estrogen receptor. 

We studied the cell cultures J889H, RB, JM1, and AM. We used 1.0, 2.5, and 5.0 

|ig/ml EM (2.27x10“6m, 5.68x10*^M, 1.14xlO-^M) and found a dose response inhibitory 

curve at these concentrations during 24h of exposure (Figure 4-5). EM at the highest 

concentration significantly inhibited cell proliferation from 60 to 82% of control depending 

on the cell line tested (p<0.02, Student's T-Test). This inhibition of thymidine uptake was 

dependent on dose in all tumor cultures (p<0.001, ANOVA). EM at 2.5 fig/ml (5.68x10'^ 

M) inhibited about 50% of cellular proliferation in all cultures. All experiments were 

performed in sextuplicate microtiter wells. 

As mentioned in the General Methods, J889H was often selected for further testing 

due to its high susceptibility to EM and that it has been very well characterized in our lab. 

We decreased the concentration of EM for the next dose response study. J889H was 

exposed, as usual in sextuplicate microtiter wells, for 24h to 0.2, 1.0, and 2.5 |ig/ml EM 

(4.54x10~7m, 2.27x10"6m, 5.68x10'^M). EM inhibited proliferation in a dose dependent 

fashion (p<0.001, ANOVA). Even at the lowest dose EM significantly inhibited DNA 

synthesis measured by thymidine uptake (Figure 6). 
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Antiproliferative action of non-alkylating estrone analogs of estramustine on glioma cells 

Next, we wanted to observe whether the alkylating portion of EM was a requirement 

for DNA synthesis inhibition, or whether our synthesized estrone analogs with a similar non¬ 

alkylating structure on the A ring (Figure lb) could similarly inhibit DNA synthesis. Since 

the molecular weights of these agents varied we decided to use lO'^M concentrations since 

this most closely approximated 5mg/ml EM. For these experiments J889H was the tumor 

culture used. 

After 24h of exposure to EM and the 4 synthesized estrone analogs, J889H was 

inhibited by all compounds but in various degrees (Figure 7). EM was clearly the most 

effective agent reducing thymidine incorporation to 5% of control. JE 208 was the most 

effective analog, inhibiting DNA synthesis by 91% of control. The other analogs, JE 205, 

JE 212, and JE 213 reduced thymidine incorporation by 68%, 90%, and 58%, respectively. 

The above experimental groups were represented in sextuplicate. 

To assess the rapidity of the antiproliferative action, we applied the drug to the tumor 

cultures and then immediately incubated with labeled thymidine so that the cells were exposed 

for only 4h to drug. Even after only 4h of exposure these agents inhibited DNA synthesis to 

a lesser degree but in a similar fashion with EM being most effective followed by JE 208, 

JE212, JE205, and JE213 (Figure 8). Again, the experimental groups were represented in 

sextuplicate. 

Effect of tamoxifen on glioma cell proliferation 

We next turned toward the use of tamoxifen in our cultures for two reasons. First we 

wanted to block any possible estrogen receptor effect of estramustine to further clarify its 

mechanism of action as ER independent. Also, we wanted to reproduce tamoxifen inhibition 

of malignant glial cell growth reported by one other lab (Pollack et al., 1991), and then 

determine if we could enhance its antiglioma effect by combination with estramustine. 
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We first used concentrations of tamoxifen of 0.2 |ig/ml and 5.0 fig/ml for 48h. 

These concentrations were the minimum and maximum concentrations used previously by 

Pollack et al. (1990a). We studied cultures of J889H, H1289G, RB, and SZ. Figure 9 

shows the rather narrow range of tamoxifen inhibition of DNA synthesis. Next, we 

shortened the duration of exposure to 24h and expanded the dosages to 0.2, 1.0, 2.5, and 

5.0 pg/ml. Figure 10 shows the dose dependent inhibition of DNA synthesis which is 

remarkable for the narrow range of toxicity. Next we studied the relationship of DNA 

synthesis inhibition of tamoxifen to duration of exposure. It was possible that tamoxifen 

exerted an early effect on DNA synthesis which was transient due to rapid metabolism of the 

drug. We added varying concentrations of tamoxifen to J889H for 4, 12 and 24 hours. 

Another group of cells had 3[H]-thymidine added at the time of exposure to tamoxifen to 

assess the most immediate response. Again, the only significant inhibition of DNA synthesis 

occurred in the cells exposed to 5.0 pg/ml tamoxifen (Figure 11). There was a time related 

response to the largest dose of tamoxifen (5.0 pg/ml). However the response to the other 

concentrations did not improve significantly over time. Interestingly, tamoxifen's inhibitory 

action on this tumor culture began to be seen at as little as 4h before ^H-thymidine analysis. 

In all the above experiments the control groups were represented in 12 microtiter wells and 

the experimental groups in sextuplicate. 

Combination chemotherapy in vitro with estramustine and tamoxifen 

To assess the effects of the combination of estramustine and tamoxifen on cultured 

glioblastoma cells we used 2.5 |ig/ml EM (5.68xl0'^M) and 5.0 jug/ml TAM since these 

concentrations were previously demonstrated to be effective in inhibiting proliferation. Cells 

were cultured in sextuplicate for 24h in EM, TAM, or a combination of both and control 

which contained 0.1% EtOH and 0.1% DMSO. Cell cultures used for this study included 

J889H, SZ, H1289G, and the commercially available glioblastoma cell line HS683. 
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TAM and EM independently inhibited DNA synthesis in all three primary cell cultures 

as well as the commercial cell line. (Figure 12-15). EM significantly inhibited about 67% of 

DNA synthesis in all cell cultures tested (p< 0.001, Student’s T-Test). H1289G and SZ 

were more sensitive to TAM than EM, while HS683 and J889H responded more to EM. The 

combination of TAM and EM is a more potent DNA synthesis inhibitor than either agent used 

alone (Table 3). All cultures were inhibited most by this combination. If the concentration of 

EM is decreased to 1.0 (ig/ml (2.27xl0'^M), this effect is still observed (Figure 16). In this 

experiment TAM appeared more potent than in the previous study. However, if the 

concentration of TAM is decreased to 2.5 pg/ml or 1.0 pg/ml it appears as if TAM 

antagonizes EM (Figure 17). 

The characteristic morphological appearance of cells arrested in mitosis is seen in the 

EM treated cells and in the cells treated with the combination but not in cells treated with 

TAM alone. (Figure 18a-d). Cells exposed to EM at a concentration of 2.5 fig/ml (5.68x10" 

^M) alone or in combination with TAM display a rounded-up morphology with a retraction 

of cytoplasmic processes. The cells treated with TAM have a distinct morphology appearing 

elongated and, at times, bipolar. 

Estramustine arrests glioma cells in G2/M phase 

In an attempt to evaluate another drug, bleomycin, for efficacy in combination with 

estramustine, we first sought to determine if EM could increase the fraction of cells in G2/M 

phase of the cell cycle. As discussed above, this is the phase of the cell cycle during which 

cells are most sensitive to bleomycin. J889H, H1289G, and HS683 were exposed to 

estramustine in duplicate 150 cm^ flasks at a concentration of 10'^M for 24h. The cells were 

then harvested an subjected to flow cytometric analysis. The experiments were replicated 

three times and the data were pooled. All cells exhibited a large increase in the proportion of 

cells in G2/M as evident in the DNA histograms (Figure 19a-b). This response was 

consistent in the cell line and primary tumor cultures. There was as great as a 192% increase 
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in fraction of cells in G2/M in J889H cells, up to 176% increase in H1289G, and up to 150% 

increase in HS683 (Table 4). 

Decreasing the concentration of EM to 10'6M resulted in a loss of this G2/M 

accumulation. DNA histograms of control treated cells do not differ from those treated with 

EM at this concentration (Figure 20). In addition, shortening the time of exposure to 4h even 

when exposing cells to 10'^M EM, also results in the loss of G2/M accumulation (Figure 

21). Interestingly, this shorter duration was previously shown to be sufficient for the 

inhibition of DNA synthesis by estramustine. 

Effect of bleomycin on the proliferation of cultured glioma 

In order to select a concentration of bleomycin that would be adequate for our study 

in combination with estramustine, we established a dose-response curve in J889H. Using 

the methods for analyzing cell proliferation outlined above, we exposed sextuplicate cell 

cultures of J889H to increasing concentrations of bleomycin for 24h. This resulted in a 

marked inhibition of DNA synthesis even at the lowest concentration (Figure 22). We 

shortened the duration of exposure to 4h to produce a more useful curve for selection of an 

appropriate concentration of bleomycin (Figure 22). Bleomycin at 1 pg/ml inhibited at least 

25% of DNA synthesis and was selected for use in the combination studies. 

Combination chemotherapy in vitro with estramustine and bleomycin 

Knowing that we could significantly accumulate cells in G2/M with EM making them 

more susceptible to bleomycin, we then pretreated sextuplicate cell cultures of HS683, 

J889H, and H1289G with control, lO'^M EM, or 5 X 10*6 for 24 hours before 4h exposure 

to 1 pg/ml bleomycin. 

EM (10"5m) alone inhibits up to 70% DNA synthesis while bleomycin results in a 

50% decrease in DNA synthesis. However, when cells are pretreated with EM for 24h 

before exposure to bleomycin, the cytotoxiciy of bleomycin is enhanced (Figure 23-25). 
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This effect increases with increasing concentration of EM and is consistent in all the 

glioblastoma cells tested. The combination of the two agents is more cytotoxic than either 

agent alone, and the effect appears to be additive. 

If the percentage increase of cells in G2/M with EM pretreatment is compared with the 

inhibition of DNA synthesis after exposure to bleomycin we observe that as the percentage of 

cells in G2/M is increased by EM, the antiproliferative action of bleomycin is similarly 

enhanced (Figure 26-28). 

Early report of estramustine therapy in patients with advanced glioblastoma 

With encouraging in vitro data, we have extended our studies with estramustine to 

clinical trial in patients with glioblastoma who have failed all conventional therapy. All 

protocols were approved by the human investigations committee. At this time we have 

experience with three patients. They each received 15mg/kg/d Estracyt (estramustine 

phosphate) in three divided doses. Two of these patients showed no response and were 

withdrawn from the study. One patient has been treated for two months and has thus far 

shown no disease progression. Since we believe the role for estramustine is ultimately in 

combination chemotherapy, plans to include estramustine in combination with conventional 

therapy are currently being considered. 



www.manaraa.com



www.manaraa.com

28 

DISCUSSION 

Summary 

This report documents the potential for estramustine as a chemotherapeutic agent 

against glioblastoma. We demonstrated the effectiveness of EM as an inhibitor of DNA 

synthesis in a number of glioblastoma cell cultures from operative specimens. It was also 

shown that synthetic analogs of estrone, structurally similar to EM without an alkylating 

agent, similarly inhibit glioblastoma cell proliferation. Operative specimens of gliomas 

contained barely detectable levels of steroid receptor proteins, and no consistent pattern of 

androgen, estrogen, or progesterone receptor content could be demonstrated among the 

tumors studied. Therefore, it is unlikely that EM exerts its antiproliferative action via a 

steroid receptor-related effect. Furthermore, EM and tamoxifen in combination potently 

inhibit DNA synthesis in all cells tested. If an estrogen receptor was necessary for the 

antiproliferative effect of EM, we would have expected tamoxifen to reduce rather than 

enhance the inhibition of DNA synthesis caused by EM. Similarly, the pretreatment of 

glioblastoma cells with EM enhances the cytotoxic potential of bleomycin alone. This is may 

be a result of an increase in G2/M phase cells caused by EM. Thus, EM as an 

antimicrotubule agent is a potent inhibitor of the proliferation of cultured malignant glioma 

cells, and deserves further study alone and in combination with other agents in patients with 

glioblastoma. 

Sex hormones and tumors 

Estrogen, progesterone, androgen, and glucocorticoid receptors have been identified 

in a variety of human tumors (Stedman et al., 1980; Molteni et al., 1981; Concolino et al., 

1984; Hollander, 1985; Meggouh et al., 1991). These include tumors of the head and neck, 

gastrointestinal tract, liver, pancreas, gallbladder, genitourinary system, various sarcomas, 

melanoma, and central nervous system in addition to the breast, uterus, ovary, and prostate. 

The functional and evolutionary significance of this finding remains unclear, however the 
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direct effect of steroids on DNA implies a possible causal relationship between steroids and 

cancer. Certainly, it is accepted that sex steroids play a role in the cause, growth, and 

prognosis of malignancies of the reproductive organs. Whether this is true in tumors of other 

systems, remains to be demonstrated. The finding of estrogen receptors in malignant tumors 

of the head and neck and gastrointestinal tract has prompted some investigators to examine 

the possibility of antiestrogenic control of these tumors (Stedman, 1980; Molteni, 1981). 

The use of receptor assays to determine prognosis may be another possible extension of this 

work. However, it is also possible that the finding of hormone receptors in some cancers are 

merely artifactual and have no therapeutic implications. 

That steroid hormones exert influence on the central nervous system has been well 

established (MacLusky and Clark, 1980; MacLusky and Naftolin, 1981). Steroid hormones 

can influence the growth of neural tissue (Vernadakis and Timiras, 1967) and also regulate 

specific glial cell functions (Vernadakis et al, 1978; Gibson and Vernadakis, 1974). Jung- 

Testas and colleagues (1989) demonstrated de novo biosynthesis of steroids in glial cells 

which supports a hypothesis of steroid influence on the functions of the CNS. Steroid 

hormones produced by glial cells may direct the organization of CNS neurons during 

development and may control certain aspects of cellular differentiation of other glial cells. 

Indeed, it was shown that estradiol can accelerate the maturation of the rodent brain (Heim 

and Timiras, 1963). These data may indicate that sex hormones can induce tumor formation 

and growth in the CNS as a result of its ability to affect cellular differentiation. Since steroid 

hormones exert their influence in cells via specific steroid receptor proteins, it was logical to 

examine normal and neoplastic glial cells for the presence of hormone receptors. 

Most of the literature regarding steroid receptors and brain tumors concentrate on 

meningiomas which now have been recognized, in many cases, to contain significant levels 

of progesterone receptor (Grunberg et al., 1991). However, there have been a few reports 

which investigated the steroid receptor status of gliomas. The largest study by Paoletti and 

colleagues (1990) analyzed tissue samples from 57 glioma specimens including 25 
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glioblastomas (GBM). They found 22 tumors contained glucocorticoid receptor (GR), 11 

contained androgen receptor (AR), 5 with estrogen receptor (ER), and only 2 with 

progesterone receptor (PR). Like most investigators they used a dextran-coated charcoal 

(DCC) method for their receptor assays. The minimal receptor concentration considered 

positive was 10 fmol/mg protein. The mean concentrations for GR, AR, ER, and PR were 

only 25.7, 24.1,17.7, 15.9, respectively. Brentani et al. (1984) also used a DCC method 

with a positive receptor level minimum of 10 fmol/mg protein and examined 12 gliomas (6 

GBM) for the presence of steroid receptors. They found 2 specimens with ER, 6 with PR, 5 

with AR, and 7 with GR. The mean concentration levels were also relatively low at 17, 16, 

17, and 12, respectively; barely above the level considered “detectable”. Using similar 

techniques and cut-off values, Fujimoto et al. (1984) and Courriere et al. (1985) also 

examined receptor levels in gliomas. The former group examined only ER levels in 20 

gliomas, including 12 GBM, and found only 3 contained measurable concentrations with a 

mean value of 59 fmol/mg protein. The later group examined 2 gliomas, part of a study of a 

variety of intracranial neoplasms, and found no detectable levels of ER or PR. In 1989, a 

group from Yugoslavia (Stojkovic et al., 1990) measured sex hormone receptor levels in 29 

gliomas (21 GBM) using the DCC method. With concentration levels of 3 fmol/mg protein 

considered positive for ER and 10 for PR and AR, they discovered 1 tumor with ER, 7 with 

PR and 9 with AR. These concentrations were no more than 20 fmol/mg protein. . Also 

using the DCC method Poisson et al. (1983) found 8 of 9 gliomas (4 GBM) with measurable 

AR, 2 with PR, 2 with ER, and 1 with GR. They measured receptor concentration as 

fmol/gram tumor tissue. This method is not as sensitive since tumor tissue contains variable 

amounts of protein. Their cut-off level was 100 fmol/g tissue and the concentrations 

measured were quite high: as much as 1370 fmol/g tissue were noted for ER. Finally, 

Kornblum et al. (1988) found no detectable levels of ER, PR, or AR in any of 11 gliomas (5 

GBM) examined. They used 5 fmol/mg protein as the cut-off value for AR and PR, and 10 

for ER. 



www.manaraa.com



www.manaraa.com

31 

We examined only 5 operative specimens of gliomas and noted results similarly 

confusing. Three out of five tumors each contained ER, PR, or AR. The concentrations of 

receptors were slightly higher than in the above studies. This may be a result of the use of 

Sephadex columns to separate unbound labeled steroid from bound rather than dextran- 

coated charcoal. Our study demonstrates the heterogeneity of gliomas in regards to steroid 

receptor protein content. Perhaps only when more specific methods of receptor assay are 

used, such as Western blotting or immunohistochemistry, will a more definitive conclusion 

be available. It is likely that gliomas are a heterogeneic tumor with each possessing no 

characteristic receptor pattern. Whether the presence or absence of steroid receptor proteins 

correlates with the degree of differentiation remains to be proven. At this time the biologic 

and therapeutic significance of hormone receptors in gliomas is not clear. 

We also have demonstrated the lack of effect of steroid hormones on the proliferation 

of glioblastoma cells. Unfortunately, only one of the cell cultures (J889H) was studied for 

the presence of estrogen receptors using immunohistochemistry and determined to possess 

no ER (data not shown). Only two of the operative specimens studied for receptor content 

were used in our in vitro work. However, it is difficult to compare the tumor at operation to 

its in vitro counterpart since some of the characteristics of the tumor cells may have been 

altered by successive passage. Nonetheless, none of the tumor cultures we studied 

responded to estrogen, progesterone, or androgen at slightly more than physiologic levels. 

The only other report that studied effects of steroids on cultured gliomas, demonstrated 

inhibitory effect of dexamethasone on cell growth at concentrations of 10 and 50 |ig/ml 

(supraphysiologic) regardless of GR content and an excitatory effect at a concentration of 

0.016 |ig/ml only in GR positive cultures (Paoletti et al., 1990). In addition, they also 

showed a cytotoxic effect of testosterone on cell growth at the supraphysiologic 

concentrations of 10 and 50 p.g/ml but no stimulatory effect at lower concentrations. None of 

the nine cultures contained androgen receptor protein. Therefore the relationship between 

receptor presence and cell growth in gliomas remains to be elucidated. Steroids may induce 
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glioma proliferation via a non-receptor mediated mechanisms or perhaps the steroids induce 

the dedifferentiation of the glial cell into a cancer and the receptor is present in only the more 

differentiated tumor. At least in culture it does not appear that the sex steroid hormones 

enhance the growth of established malignant glioma. 

Estramustine is a potent inhibitor ofDNA synthesis in glioblastoma cells 

This report confirms the results of one other group that EM is a potent inhibitor of 

human glioma cells. The data produced by von Schoultz and colleagues (1988, 1989, 1990) 

used concentrations of EM in the range of 5 to 20 pg/ml against human glioma cell lines. 

Our work is unique in that we have shown that EM is even effective at concentrations as little 

as one tenth the amount used in previous studies. We also have demonstrated for the first 

time that EM inhibits the proliferation of primary cell cultures of operative glioma specimens. 

The effect of EM on glioma cell cycle was also obtained with lower concentrations of EM. It 

is not clear if the previous group tested EM at lower concentrations or if our cell cultures are 

more sensitive to EM. However, we have no evidence that would reveal why our cells 

would have increased sensitivity to EM. 

EM effectiveness in glioma may be due to expression of estramustine binding protein 

(EMBP). von Schoultz et al. (1988) demonstrated greater than 90% of 4 different glioma cell 

lines positive for rat EMBP immunoreactivity. These cell lines were all sensitive to the 

growth inhibitory effect of EM. However, the use of rat anti-EMBP does not prove the 

presence of a human EMBP in gliomas. There simply may be cross-reactivity to another 

cellular protein. Nonetheless, this protein may serve as a prognostic indicator of a positive 

response to estramustine therapy. Our laboratories are currently engaged in determining 

whether REMBP is cross-reactive to MAPs in human gliomas. 
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Analogs of estrone inhibit DNA synthesis in glioblastoma cell cultures 

We have produced preliminary data demonstrating the effectiveness of synthetic 

analogs of estrone structurally similar to EM but containing no alkylating moiety. The 

presence of a carbamate group conjugated to a homocyclic or heterocyclic ring at the 2 or 3 

positions is the common structural property of EM , nocodazole, and other microtubule 

inhibitors (Gupta 1986). Other steroid alkylating agents also have a carbamate-ester group at 

the 3 position of the steroid A ring. These antileukemic agents may have been microtubule 

inhibitors as well (Catsoulacos et al., 1979). Interestingly, when EM was in development 

other compounds with similar structures were most effective when a carbamate group was 

conjugated at position 2 or 3 of the heterocyclic or homocyclic ring (Leclercq et al., 1978). 

These agents, unfortunately, were never tested for antimicrotubule action, nor were these 

evaluated for antiproliferative action against malignant glioma. 

The estrone analogs we had synthesized were all inhibitors of DNA synthesis in 

glioma cell cultures . The carbamate at position 2 of the steroid A-ring (JE208) was the most 

active compound. A carbamate at the four position (JE205) slightly reduces this 

antiproliferative effect. Cyclization of the ethyl carbamate of JE208 to 2,3-oxozonaly estrone 

(JE212) reduces this action just slightly. Finally, the replacement of the ester group of JE208 

with an acetate (JE213) also decreases the antiproliferative action. Although we have not 

demonstrated that the estrone analogs and EM exert their antiproliferative effect via the same 

mechanism, we know of no other reason that these analogs should inhibit DNA synthesis. 

In addition the morphological alterations of glioblastoma cells caused by JE208 were similar 

to those caused by EM (Figure 29). Although the effect is less dramatic than when cells are 

treated with EM, exposure to JE208 results in a rounding-up of cells and a decrease in 

cytoplasmic projections. 

The therapeutic potential of microtubule inhibitors in the management of glioblastoma 

is indicated by the elevated levels of microtubules found in these neoplasms (Lantos, 1977). 

Taxol, a new antimicrotubule agent has been demonstrated to be highly effective in the 
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management of ovarian cancer (McGuire et al., 1989). Recently, taxol was used in vitro 

with EM against prostatic carcinoma cell lines (Speicher, Barone, and Tew, 1992). EM and 

taxol produced a greater than additive effect on the inhibition of cell survival in prostatic cell 

lines. Interestingly, vinblastine did not enhance the cytotoxic effect of taxol. It has also been 

determined that EM can inhibit invasion of DU-145 prostate carcinoma cells in vitro (Mareel 

et al., 1988). This would be an important quality of an antiglioma agent since invasion of 

normal brain parenchyma is a devastating characteristic of astrocytomas. Since prostatic 

carcinoma cells display the metaphase arrest seen in glioma cells (Sheridan, Speicher, and 

Tew, 1991), there is no reason to believe that EM could not inhibit the in vitro invasion of 

glioma. 

Tamoxifen and estramustine are a potent combination 

We have confirmed reports that the triphenylethylene derivative tamoxifen is a potent 

inhibitor of glioma DNA synthesis. The concentrations we used in culture approximate that 

attainable in breast cancer patients. Most of the early studies on tamoxifen plasma levels 

measured concentrations of around 2 |ig/ml after chronic tamoxifen administration (Daniel et 

al., 1979; Murphy et al., 1987). A recent study reported preliminary results on the use of 

oral tamoxifen in patients with glioma refractory to conventional therapy. Of 32 patients with 

advanced glioblastoma, 7 remained neurologically stable without radiographic evidence of 

tumor progression for 6 or more months (Vertosick et al., 1992). Unfortunately these results 

are difficult to interpret due to the lack of a control group and the arbitrary definition of a 

positive response to tamoxifen (stable disease for 6 months). 

Our data also supported the hypothesis that EM action is independent of estrogen 

receptors (ER). If EM functions via the ER, tamoxifen would decrease the inhibition of 

DNA synthesis caused by EM. Although it is widely believed that EM is a microtubule 

inhibiting agent that functions independent of ER, a recent report found that the presence of 

ER correlates with the antiproliferative action of EM (Pavelic, Zgradic, and Pavelic, 1991). 
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This study examined human mammary, prostatic, renal, and uterine carcinoma cultures. A 

possible explanation for their observation is that ER may correlate with the presence of 

EMBP. Also, ER may be present in more differentiated tumors more susceptible to 

chemotherapy. One other report found that increasing levels of estradiol abolished the 

antiproliferative effect of estramustine in gastrointestinal cancer cell lines (Harrison et al., 

1990) . This may not be a result of ER blockade by estrogen, but rather estrogenic 

stimulation of the cancer cell lines. 

PKC is an attractive target for the therapy of malignant glioma as well as some other 

tumors. Malignant glial cell lines contain large amounts of PKC (Couldwell et al., 1991) and 

most gliomas express immunoreactive PKC as well (Reifenberger, Deckert, and Weschler, 

1989). In addition, PKC is expressed in developing glia and malignant glia but is poorly 

expressed in adult quiescent glial cells (Bhat, 1989). Over-expression of PKC in transfected 

fibroblasts leads to enhanced tumorigenicity (Persons et al., 1988) and increased growth rate 

(Housey et al., 1988). PKC inhibition blocks v-src and v-fps induced expression of a 

transformation-related 9E3 gene (Spangler et al., 1989). 

We found the combination of TAM and EM to be more effective in inhibiting DNA 

synthesis in glioblastoma cell cultures than either agent individually. It appears as if this 

effect is additive rather than synergistic. Although this would indicate the two agents exert 

their effects through independent targets, there still may be a synergistic component to their 

combined action. Tamoxifen may be well suited for combination therapy with EM because 

PKC is implicated in the control of microtubule function. A binding site for tamoxifen has 

been located on protein kinase C (O’ Brian, Housey et al., 1988). Activation of PKC induces 

the formation of microtubules in cytoplasmic processes of human fibroblasts (Tint et al., 

1991) and inhibition of PKC by sphingosine arrests neurite outgrowth (Hall et al., 1988). 

Also, PKC has been demonstrated to catalyze the phosphorylation of microtubule associated 

proteins (MAPs) (Hoshi et al., 1987, 1988). This can lead to increased DNA synthesis 

(Shaw, Chou, and Anand, 1988). As noted previously, malignant glial cells contain 
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abundant microtubules and MAPs (Lantos, 1977; Koszka, Leichfried, and Wiche, 1985). 

We found distinct morphological alterations of glioblastoma cells treated with TAM which 

may indicate action on the cytoskeleton (Figure 18c). In order to better clarify the 

mechansims of the combined action of EM and TAM we will use a wider concentration range 

for the two agents to generate an isobologram for analysis. 

Curiously, 5.0 (ig/ml TAM seemed to inhibit the proliferation of a larger percentage 

of J889H cells in Figure 16 than seen in Figure 13. We are unable to explain this effect 

except that a different stock of TAM was used which may have been more potent. However, 

it is possible that the cells were proliferating at a greater rate in the second experiment (Figure 

16) which would render them more susceptible to the inhibitory effects of TAM. In support 

of this, the control CPM is slightly greater in the second experiment but this may simply be 

due to a technical artifac1;. 

Some clinical side-effects of EM are estrogen-related, presumably due to increased 

levels of circulating estrogens and estrogen metabolites (Andersson et al., 1981). Fossa and 

co-workers (1977) demonstrated an increase in the circulating levels of estrogen in men given 

estramustine phosphate for the treatment of prostate cancer. Fredholm et al. (1974) noticed 

that EM , when administered to rodents, had a uterotropic effect although it was two orders 

of magnitude weaker than estradiol. Daehlin and colleagues (1986) also detected an increase 

in plasma estradiol levels in prostatic carcinoma patients after six months administration of 

9.2 mg/kg estramustine phosphate. Circulating estradiol increased from 0.08 nM before 

treatment to 27.9 nM after treatment. Gunnarsson and co workers (1981) demonstrated a 

dose dependent increase in circulating estradiol levels in patients treated with increasing oral 

doses of estramustine phosphate. As the dose of EM increased from 70 to 560 mg/day, the 

estradiol levels in the plasma increased from a mean of 0.7 ng/ml to a mean of 7.1 ng/ml. 

We investigated the effect of combining EM and TAM on the proliferation of cultured 

human glioblastoma cells since these agents may possess synergistic actions against 

microtubules. This combination also targets distinct physiologic mechanisms which may 
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enhance the antiproliferative action of either agent when used alone. It appears that these 

additive effects via separate cellular targets predominate the combined action of the two 

drugs. In addition, TAM may benefit patients suffering from estrogenic side-effects of EM. 

Wtih a disease as devestating as glioblastoma, new combinations of drugs with few and 

different dose limiting toxicities are desperately in need. Further research studying the 

development of synergistic drugs acting on microtubule function via distinct mechanisms 

may prove to be of value in other malignancies as well. 

Prior exposure of glioblastoma cells to estramustine enhances the cytotoxicity of bleomycin 

Attempts to enhance the effects of combination chemotherapy by sequential 

administration of agents have been reported previously (Nicolini, 1976; Shimuzu et al., 

1980). One group achieved promising results when they pretreated patients with various 

tumors with vincristine followed by procarbazine, cyclophosphamide, or ara-C (Pouillart et 

al., 1975). Other groups used hydroxyurea, ara-C, and VM26 as synchronizing agents (for 

review see Van Putten, Keizer, and Mulder, 1976). The rationale in these studies was to 

synchronize tumor cells with one agent and then release the cells into a phase of the cell cycle 

in which the next agent is most cytotoxic. In order to synchronize cells in vivo patients 

must be treated with the first agent for long enough to synchronize a significant proportion of 

the tumor population. In cancers with slow doubling times, this may be impossible due to 

the toxic effects of the synchronizing agent. Since estramustine has been associated with 

very little morbidity in patients treated for prostate cancer, we thought it was well suited as a 

synchronizing agent since it could be given to patients for long periods. In addition, it may 

also accumulate specifically in tumor cells due to the presence of EMBP. 

Barranco and colleagues (1982) demonstrated the enhanced cytotoxicity of bleomycin 

when CHO cells were synchronized in G2/M phase (Figure 30). When CHO cells were 

synchronized with dianhydrogalactitiol (DAG) and released, cells would progress through 

G2/M phase 18 hours later. If these cells were exposed to bleomycin at this time, DNA 
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synthesis was more inhibited than at any other time. If cells were synchronized in all phases 

of the cell cycle (Barranco and Humphrey, 1971), those in G2/M were most susceptible to 

bleomycin (Figure 31). When we pretreated glioblastoma cells with estramustine, we noted a 

significant increase in cells in G2/M phase. Following this, the application of bleomycin to 

the cell cultures resulted in enhanced cytotoxicity of bleomycin. 

It appears as if the increased antiproliferative effect as a result of the combination of 

EM and BLM is an additive effect. In the concentrations used in this study the agents are 

likely acting on separate cellular mechanisms. However, it is still possible that the enhanced 

cytotoxicity resulting from the combination of agents may, especially at concentrations not 

used in this report, be due to EM induced increase of cells in G2/M, although we cannot, at 

this time, prove this. EM can also inhibit glutathione-S-transferase (GST) activity in DU-145 

cells (Tew, Woodworth, and Stearns, 1986; Tew and Stearns, 1987). Bleomycin has been 

shown to have enhanced cytotoxicity in CHO variants that possess little or no GST activity 

(Giaccia et al., 1991). Therefore the increase in DNA synthesis inhibition by the 

combination of EM and BLM may be due to non-cell cycle specific effects. Regardless of 

mechanism, the combination of BLM has been shown to be a highly effective in vito inhibitor 

of malignant glioma proliferation. Further research will assess the important clinical utility of 

this data. 

Urgent need for effective therapy against malignant glioma 

We are currently testing other agents in combination with estramustine since we 

believe the potential for successful chemotherapy in patients with glioblastoma lies with 

combination chemotherapy. We are also studying the combination of estrone analogs and 

various conventional agents a similar fashion. Resistance to EM can develop in DU145 

prostate cancer cells (Speicher et al., 1991) which emphasizes the importance of combination 

therapy. In vitro drug sensitivity testing for malignant glioma has become an acceptable 

method for the evaluation of new agents as well as a method for determining a patient’s 
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tumor sensitivity to a specific drug (Nikkhah et al., 1992). Our cell culture system provides 

a reliable method of preclinical evaluation of chemotherapeutic agents against glioblastoma. 

The need for more effective therapy in the management of malignant glioma is evident 

in a recent large multicenter trial of a promising antiglioma drug (Schold et al., 1993). 

Diaziquone (AZQ) was evaluated against the current standard BCNU in 251 patients 

randomized after radiation therapy (78% had some prior surgical resection). The median 

survival after randomization for patients with glioblastoma over the age of 45 was only 37 

weeks without a significant difference between the two agents. Patients with GBM or age 

less than 45, or age less than 45 and with anaplastic astrocytoma, fared better with median 

survivals of 61 and 147 weeks, respectively. There was no difference between those treated 

with AZQ and those treated with BCNU. Again, cancer research has produced an agent that 

is no more effective than a drug used for almost 30 years in the treatment of glioblastoma. 

Clearly, more effective agents are needed. 

The future of therapy for glioblastoma will likely come from immunology (see 

Ingram et al., 1990 and Nitta et al., 1990). Until then, however, the elucidation of various 

molecular targets for chemotherapeutic attack will remain an important task for glioblastoma 

researchers. New agents aimed at specific proteins and functions of malignant gliomas in 

combination with surgery and radiation are currently the only hope for patients with the 

dismal diagnosis of glioblastoma. 
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TABLE 1. Sex of patient and histolgy of operative tumor specimens. 

Tumor Sex Histology 

J889H M GBM 

H1289G F GBM 

JMz M Anaplastic 
Oligodendroglioma 

AM M GBM 

SZ M GBM 

WG M GBM 

WP M BRAINSTEM 

GBM 
SC M EPENDYMOMA 

RB M GBM 

RC F GBM 

JML M GBM 

AMe M GBM 

LS F cellular 
astrocytoma 

GBM, glioblastoma; M, male; F, female 
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TABLE 2. The presence of hormone receptor protein in tumor tissue from 
operative specimens. 

TUMOR AR 
fmol/mg protein 

ER 
fmol/mg protein 

PR 
fmol/mg protein 

H1289G 65.9 0 74.0 

WG 35.7 0 9.7 

IH 0 26.9 11.9 

AM 26.4 21.0 20.4 

JMz 0 29.0 2.3 

androgen receptor, AR; estrogen receptor, ER; progesterone receptor, PR 

TABLE 3. Percent inhibition ofDNA synthesis by estramustine (EM) and 
tamoxifen (TAM) and their combination. 

TUMOR TAM 
5.0 ug/ml 

EM 
2.5 mg/ml 

TAM+EM 

HS683 49 65 92 * 

J889H 48 71 87 * 

H1289G 95 81 98 * 

SZ 81 69 95 ** 

* significantly greater than TAM and EM alone (p<0.0001) 
** significantly greater than TAM and EM alone (pcO.OOl) 
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TABLE 4: Percentage of cells in G2/M phase after exposure to 
estramustine for 24 hours 

Cells Treatment % G2/M 
(mean) * 

HS683 Control 28 
EM 10-5M 50 

H1289G Control 23 
EM 10-5M 53 

J889H Control 30 
EM 10-5M 41 

* significant at p<0.019 (paired t-test) when compared to control 
values in all cell cultures 
n=3 for all groups 
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FIGURE LEGENDS 

Figure 1. The structures of estrone, estromustine (the active metabolite of estramustine), 

and various synthetic analogs of estrone synthesized in the laboratory of Dr. Jan Zielinski. 

Note the absence of an alkylating moiety on the estrone analogs. 

Figure 2 AM glioblastoma cells, in media containing 10% gelded-horse, serum were 

exposed to 10'^M concentrations of 6-estradiol, progesterone, or DHT or 0.1% ethanol 

control for 72h before 4h incubation with 3H-thymidine. Error bars depict SEM. For each 

treatment group, n=4. No significant effect was observed (Student's T-Test, p >0.05). 

Figure 3 H1289G glioblastoma cells, in media containing 10% gelded horse serum, were 

exposed to lO'^M concentration of 6-estradiol, progesterone, or DHT or 0.1% ethanol 

control for 72h before 4h incubation with 3H-thymidine. Error bars depict SEM. For each 

treatment group, n=4 No significant effect was observed (Student's T-Test, p >0.05). 

Figure 4. J889H and RB glioblastoma cells were exposed to EM in increasing 

concentrations for 24h before 3H-thymidine incorporation analysis. The effect of EM is 

dose related in both cell cultures (ANOVA, p <0.05). For each concentration n=6. Error 

bars depict SEM. 

Figure 5. JM1 and AM glioblastoma cells were exposed to EM in increasing concentrations 

for 24h before 3H-thymidine incorporation analysis. The effect of EM is dose related in both 

cell cultures (ANOVA, p <0.05). For each concentration n=6. Error bars depict SEM. 

Figure 6. J889H glioblastoma cells were exposed to increasing concentrations of EM for 

24h before 3H-thymidine incorporation studies. Estramustine inhibits DNA synthesis in 
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J889H in a dose dependent fashion (p <0.001), ANOVA). For each concentration n=6. 

Error bars depict SEM. 

Figure 7. Exposure of J889H glioblastoma cells to EM and synthetic estrone analogs at a 

concentration of 10"^M for 24h. All agents significantly inhibited DNA synthesis with EM 

being most effective followed by JE208, JE212, JE 205, and JE 213 (p <0.01, Student's T- 

Test). For all groups n=6. 

Figure 8. Exposure of J889H glioblastoma cells to EM and synthetic estrone analogs at a 

concentration of 10'^M for 4h. All agents significantly inhibited DNA synthesis with EM 

being most effective followed by JE208, JE212, JE 205, and JE 213 (p <0.05, Student's T- 

Test). For all groups n=6. 

Figure 9. Tamoxifen inhibits DNA synthesis in cultured glioblastoma. Cells were exposed 

to tamoxifen at a concentration of 0.2 or 5.0 |ig/ml for 48h. All cultures displayed reduced 

thymidine incorporation at the higher concentration (p <0.001), but the lower concentration 

of tamoxifen had no effect on proliferation (p >0.05, Student's T-Test). For each 

concentration n=6 except control (n=12). Error bars depict SEM. 

Figure 10, Exposure of J889H glioblastoma cells to increasing concentrations of tamoxifen 

for 24h. Note the large decrease in DNA synthesis when the concentration of tamoxifen is 

doubled from 2.5 |ig/ml to 5.0 (J-g/ml. The inhibitory effect is dose related (p <0.05, 

ANOVA) but only 2.5 and 5.0 |J.g/ml significantly inhibit DNA synthesis p<0.05, Student's 

T). For each concentration n=6 except control (n=12). Error bars depict SEM. 

Figure 11. J889H glioblastoma cells were exposed to increasing concentrations of 

tamoxifen for 24h. 3lH]-thymidine incorporation is expressed as percent of control. A dose 
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related inhibition of DNA synthesis is noted for 12 and 24 hours (p<0.05, ANOVA) but not 

0 and 4 hours. Five pg/ml tamoxifen significantly inhibited DNA synthesis for all durations 

except the immediate exposure (p <0.05, Student’s T). For each concentration n=6 except 

control (n=l 1). Error bars depict SEM. 

Figure 12. Combining estramustine (EM) 2.5 pg/ml (5.68xl0'^M) and tamoxifen 5.0 

pg/ml (TAM) in culture for 24h significantly inhibit DNA synthesis in HS683 glioblastoma 

cell line. The combination is more efficacious than either agent alone (p <0.001, Student's 

T). For each group n=6. Error bars depict SEM. 

Figure 13. Combining estramustine (EM) 2.5 pg/ml (5.68xl0‘^M) and tamoxifen 5.0 

pg/ml (TAM) in culture for 24h significantly inhibit DNA synthesis in J889H glioblastoma 

cells. The combination is more efficacious than either agent alone (p <0.001, Student's T). 

For each group n=6. Error bars depict SEM. 

Figure 14. Combining estramustine (EM) 2.5 pg/ml (5.68xl0'^M) and tamoxifen 5.0 

pg/ml (TAM) in culture for 24h significantly inhibit DNA synthesis in SZ glioblastoma cells. 

The combination is more efficacious than either agent alone (p <0.001, Student's T). Error 

bars depict SEM. 

Figure 15. Combining estramustine (EM) 2.5 pg/ml (5.68xl0'^M) and tamoxifen 5.0 

pg/ml (TAM) in culture for 24h significantly inhibit DNA synthesis in H1289G glioblastoma 

cells. The combination is more efficacious than either agent alone (p <0.001, Student's T). 

For each group n=6. Error bars depict SEM. 

Figure 16. Decreasing the concentration of EM to 1.0 pg/ml (2.27x10'^M), with tamoxifen 

still 5.0 pg/ml, still results in an enhancement of tamoxifen inhibition of DNA synthesis in 
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J889H glioblastoma cells. The combination is more effective than either agent alone (p 

<0.05, Student's T). For each group n=6. Error bars depict SEM. 

Figure 17. When the concentration of tamoxifen is decreased from 5.0 to 2.5 pg/ml the 

combination of EM and tamoxifen is no longer more effective in inhibiting DNA synthesis 

than EM alone. For each group n=6. Error bars depict SEM. 

Figure 18a. H1289G glioblastoma cells after 24 hours exposure to control media (0.1% 

EtOH and 0.1 % DMSO). Note the cytoplasmic processes typical of malignant glial cells well 

as the different oblong shapes. 

Figure 18b. H1289G glioblastoma cells after 24 hours exposure to media containing 

tamoxifen (TAM) 5.0 |ag/ml in EtOH (0.1%) and 0.1% DMSO. The cells appear more 

tubular than control and almost bipolar. 

Figure 18c. H1289G glioblastoma cells after 24 ours exposure to media containing 

estramustine (EM) 2.5 fig/ml (5.68xlO‘6M) in DMSO (0.1%) and 0.1% EtOH. The cells 

have a more rounded appearance typical of cells arrested in G2/M. Cytoplasmic processes 

are retracted forming "blebs" at the cell surface. 

Figure 18 d. H1289G glioblastoma cells after 24 hours exposure to media containing 

tamoxifen (TAM) in EtOH (0.1%) and estramustine (EM) 2.5 |ig/ml (5.68xlO‘^M) in 0.1% 

DMSO. The cells are few in number and appear almost nonviable. Their morphology is 

more of a rounded-up appearance but with few surface blebs. 

Figure 19a. DNA histogram for HS683 cells exposed to 10-5M EM for 24 hours. Note 

the increase in the G2/M fraction in cells exposed to EM. 
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Figure 19b. DNA histogram for J889H cells exposed to 10-5M EM for 24 hours. Note 

the increase in the G2/M fraction in cells exposed to EM. 

Figure 20. J889H cells were exposed to 10-6M EM for 24 hours. The top histogram 

represents control and the bottom histogram represents EM treated cells. The was no 

difference in the two groups. 

Figure 21. H1289G cells were exposed to EM 10-5M (top histogram) or control (bottom) 

for 4 or 24 hours. There was no difference in the control groups. Cells exposed to 4 hours 

of EM (top, darker line) did not differ from control. Only cells exposed for 24 hours to EM 

(top, lighter line) showed the characteristic increase in G2/M fraction. 

Figure 22. Dose response curve of increasing concentrations of bleomycin (BLM). J889H 

glioblastoma cells were exposed to BLM for 4 or 24 hours before thymidine incorporation 

analysis. Since 24 hours appeared to be excessive, we decided to incubate for only four 

hours in the combination studies. For all concentrations n=6. 

Figure 23. HS683 glioblastoma cell line was pretreated for 24 hours with 10'^M or 5x10' 

^M estramustine (EM) or 0.1% DMSO control. The media was withdrawn and the cells 

were then exposed to bleomycin (BLM) at a concentration of lpg/ml for 4 hours. Thymidine 

incorporation was then assessed. Both EM and BLM inhibit DNA synthesis in a dose 

dependent fashion. When cells are pretreated with EM, BLM more potently inhibits DNA 

synthesis when compared to pretreatment with control (Student's T-test, p <0.01). For all 

groups n=6. Error bars depict SEM. 
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Figure 24. H1289G glioblastoma cells were pretreated for 24 hours with 10'^M or 5x10' 

estramustine (EM) or 0.1% DMSO control. The media was withdrawn and the cells 

were then exposed to bleomycin (BLM) at a concentration of lpg/ml for 4 hours. Thymidine 

incorporation was then assessed. Both EM and BLM inhibit DNA synthesis in a dose 

dependent fashion. When cells are pretreated with EM, BLM more potently inhibits DNA 

synthesis when compared to pretreatment with control (Student's T-test, p <0.01). For all 

groups n=6. Error bars depict SEM. 

Figure 25. J889H glioblastoma cells were pretreated for 24 hours with 10'^M or 5xl0'^M 

estramustine (EM) or 0.1% DMSO control. The media was withdrawn and the cells were 

then exposed to bleomycin (BLM) at a concentration of lpg/ml for 4 hours. Thymidine 

incorporation was then assessed. Both EM and BLM inhibit DNA synthesis in a dose 

dependent fashion. When cells are pretreated with EM, BLM more potently inhibits DNA 

synthesis when compared to pretreatment with control (Student's T-test, p <0.01). For all 

groups n=6. Error bars depict SEM. 

Figure 26. Correlation between HS683 cells arrested in G2/M by 10'^M estramustine (EM) 

and DNA synthesis inhibition by bleomycin BLM after pretreatment with 10'^M EM. The 

lighter shaded bars represent percentage of all cells in G2/M phase (measured by flow 

cytometry) after exposure to EM or control. The darker bars represent percent decrease in 

3[H]-thymidine incorporation. As cells are arrested in G2/M by EM, BLM becomes a more 

potent inhibitor of DNA synthesis. 

Figure 27. Correlation between H1289G cells arrested in G2/M by 10'^M estramustine 

(EM) and DNA synthesis inhibition by bleomycin BLM after pretreatment with lO'^M EM. 

The lighter shaded bars represent percentage of all cells in G2/M phase (measured by flow 

cytometry) after exposure to EM or control. The darker bars represent percent decrease in 
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3[H]-thymidine incorporation. As cells are arrested in G2/M by EM, BLM becomes a more 

potent inhibitor of DNA synthesis. 

Figure 28. Correlation between J889H cells arrested in G2/M by 10"^M estramustine (EM) 

and DNA synthesis inhibition by bleomycin BLM after pretreatment with 10'^M EM. The 

lighter shaded bars represent percentage of all cells in G2/M phase (measured by flow 

cytometry) after exposure to EM or control. The darker bars represent percent decrease in 

3[H]-thymidine incorporation. As cells are arrested in G2/M by EM, BLM becomes a more 

potent inhibitor of DNA synthesis. 

Figure 29a. J889H cells exposed to control media for 24 hours. Note the characteristic 

cytoplasmic processes. 

Figure 29b. J889H cells exposed to EM at a concentration of 10-5M for 24 hours. Note 

the typical rounding-up of cells and cell surface blebs. 

Figure 29c. J889H cells exposed to JE208 at a concentration of 10-5M for 24 hours. 

There are more rounded cells than in those treated with control media, a picture typical for 

EM treated cells. Also, note the absence of long cytoplasmic processes. 

Figure 30. This graph adapted from Barranco et al. (1981), depicts the effect of 

synchronizing Chinese hamster ovary (CHO) cells with dianhydrogalactitol and then 

releasing them. 18 hours later the majority of cells are in G2/M phase. When bleomycin is 

added to cultures at timed intervals, it is most cytotoxic at 18 hours. 

Figure 31. CHO cells were synchronized in various cell cycle phases with double-thymidine 

block. Cells in G2/M phase were most susceptible to bleomycin when they were in G2/M. 
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